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Abstract—Wavelet Entropy (WE) is one of the entropy 

measurement methods by means of the discrete wavelet 

transform (DWT) subband. Some of the developments of WE are 

wavelet packet entropy (WPE), wavelet time entropy. WPE has 

several variations such as the Shannon entropy calculation on 

each subband of WPD that produces 2N entropy or WPE, which 

yields an entropy value. One of the WPE improvements is 

multilevel wavelet packet entropy (MWPE), which yields entropy 

value as much as N decomposition level. In a previous research, 

MWPE was calculated using Shannon method; hence, in this 

research MWPE calculation was done using Renyi and Tsallis 

method. The results showed that MWPE using Shannon 

calculation could yield the highest accuracy of 97.98% for N = 4 

decomposition level. On the other hand, MWPE using Renyi 

entropy yielded the highest accuracy of 93.94% and the one using 

Tsallis entropy yielded 57.58% accuracy. Here, the test was 

performed on five lung sound data classes using multilayer 

perceptron as the classifier. 

Keywords—Wavelet packet entropy; lung sound; Shannon 

entropy; Renyi entropy; Tsallis entropy 

I. INTRODUCTION 

Abnormalities that occur in the respiratory system can be 
observed from the sound generated during the respiratory 
process. This breathing sound commonly is heard by a doctor 
using a stethoscope, also known as auscultation. The 
respiratory or pulmonary sound analysis is one of the most 
interesting research topics in the field of medical signal 
processing. Various methods have been developed for the 
extraction of pulmonary sound features for automatic 
classification. One of the most commonly used methods is the 
entropy analysis. Entropy is a measure of signal or system 
irregularity. It is frequently used to measure signal complexity 
as in biological signals. 

Various entropy calculation methods have been used in 
lung sound analysis in which Sample entropy was used as a 
feature for detecting pulmonary sound status using 
morphological complexities [1]. Meanwhile, Tsallis entropy 
was used for lung sound analysis in [2] and [3]. Multiscale 
entropy was reported to be better in distinguishing lung sounds 
in alveolitis patients rather than spectral or statistical methods 
[4]. Another entropy measurement method is the wavelet 
entropy (WE). It uses Shannon entropy calculations on the 
subband of discrete wavelet transform (DWT) [5]. The 
improvement of the wavelet entropy is the wavelet packet 

entropy (WPE) that uses the wavelet packet decomposition 
(WPD) subband [6]. WE produced low accuracy when used as 
a feature for pulmonary sound classification as reported in [7]. 
In five classes of pulmonary data, WE only resulted in an 
accuracy of 43%. For that reason, the development of WE 
method is needed to improve the accuracy of pulmonary sound 
classification. 

Previous research has proposed a multilevel wavelet packet 
entropy (MWPE) method for pulmonary sound feature 
extraction [8]. Entropy was calculated on the subband of WPD 
at several levels using the Shannon entropy method. In addition 
to the Shannon method, there are other several methods of 
calculating entropy such as Renyi entropy and Tsallis entropy. 
Renyi entropy is a common form of Shannon entropy [9]; 
while Tsallis entropy is a generalization form of entropy with 
the generalization parameter of q [10]. In this study, MWPE 
was calculated using Renyi entropy and Tsallis entropy to 
observe the resulted accuracy. The results obtained was then 
compared with the MWPE resulted in previous studies using 
five classes of lung sound data. 

This paper is presented as follows. Section 2 describes 
some previous studies using wavelet entropy and wavelet 
packet entropy. Section 3 describes the detailed methods used 
in this study including data, wavelet decomposition, and 
classifier. Results and discussion are presented in Section 4 and 
the conclusions and prospects for future research are presented 
in Section 5. 

II. RELATED WORKS 

Wavelet entropy (WE) is widely used for complex signal 
analysis such as for biological signals. It is entropy calculation 
using subband of DWT. In [5], WE was used for brain signals 
analysis in short durations. Compared to spectral entropy (SE), 
WE was found better to detect non-stationary signals. It was 
also used for a ventricular beat suppression analysis in the 
cases of atrial fibrillation [11]. A number of differences in WE 
values showed some different levels of suppression in the 
ventricular beat. If WE was calculated on the subband of the 
DWT, then some researchers used subband results from WPD. 
Entropy in the subband of WPD results were used for analysis 
of murmurs in heart sound in [12]. Not all subbands were used 
for entropy calculation but they could be calculated based on 
the frequency range, noise frequency, and energy threshold 
[12]. 
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Another variation of WE was the different entropy 
calculations on wavelet subband. Sample entropy on DWT 
subband used for EEG signal analysis was presented in [13]. 
Cen and Li used the Tsallis wavelet entropy for power signal 
analysis [14]. Normalized Shannon wavelet entropy, 
meanwhile, was calculated on wavelet coefficient for epileptic 
EEG analysis [15]. 

Another method based on wavelet entropy is the wavelet 
packet entropy (WPE). Some variations of WPE have been 
proposed by several researchers. In [6], entropy was calculated 
using crest energy in each subband of WPD results. 
Meanwhile, Shannon method was used in WPD subband for 
bearing inspection in [16]. The number of generated features 
was 2

N
, where N refers to the signal decomposition level. In 

another study, multilevel wavelet packet entropy (MWPE) was 
proposed for lung sound analysis [8]. If in [16], WPE was 
produced by calculating the Shannon entropy on each WPD 
subband, then in [8], WPE was generated from Shannon 
entropy calculations from the subband relative energy such as 
WE calculation in [5]. So, each decomposition level would 
produce an entropy value. Since WPE was calculated on 
multilevel, for N level decomposition it will produce N entropy 
values as the signal feature. The experiments reported 97.98% 
accuracy using Db8 at the level of decomposition N = 4 [8]. 
The results were obtained for five classes of lung sound data. 

In previous research, MWPE used Shannon entropy 
calculation to compute entropy on WPD subband. In this study, 
MWPE was tested using Renyi entropy (RE) and Tsallis 
entropy (TE). Renyi entropy is a common form of the entropy 
equation [9]. Meanwhile, Tsallis entropy, commonly called as 
non-extensive entropy, is often used for non-additive signal 
analysis [17]. A comparison among ShEN, RE, and TE for 
MWPE calculation is expected to be a recommendation of the 
selection of entropy calculation methods on MWPE for 
biological signal analysis, especially for lung sound analysis. 

III. MATERIAL AND METHODS 

Fig. 1 shows a block diagram of the process conducted in 
this paper. First, the preprocessing of the pulmonary sound 
signal was done for amplitude normalization and to uniform 
the mean of the signal. WPD was then performed from level 1 
to level N. At each level of decomposition it performed WPE 
calculations using the Shannon, Renyi, and Tsallis method. In 
the next stage, the classification was done using MLP and N-
fold cross-validation. A further explanation is provided in the 
following subsections. 

 
Fig. 1. The Block Diagram of Lung Sound Classification using MWPE. 

A. Lung Sound Data 

In this study, we used lung sound recording data obtained 
from several sources [18][19]. The same data was used in 
previous studies [8][20]. Each pulmonary sound data consisted 
of single breathing cycle, inspiration, and expiration. Using a 
sampling frequency of 8000Hz, the length of one data was then 
ranged from 20000-30000 samples. The data consisted of five 
classes of normal bronchial data representing normal lung 
sounds, wheeze, stridor, crackle, and plural rub representing 
pathological lung sound [21]. In the data normalization process 
was carried out as follows. Zero-mean was done as in Equation 
(1). 

 ( )   ( )  
 

 
∑  ( ) 
              (1) 

with x(n) is the input signal and y(n) is the output signal, 
which has mean = 0. Furthermore, the normalization of 
amplitude was presented as in Equation (2) in order to obtain a 
signal in the range of -1 to +1. 

 ( )  
 ( )

   | |
              (2) 

In the next step, we did wavelet decomposition to calculate 
the WPD as in the following section. 

B. Wavelet Packet Entropy 

Wavelet packet decomposition (WPD) on signal S(t) was 
defined as in equation (3). 
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    2                (3) 

with S(t) is an original signal, j is the scale, n and k are the 
band and surge parameter respectively. From Equation (3) we 
could calculate the energy of each subband as in Equation (4). 

  𝑗,  ∑ |𝑑𝑗, (𝑘)|
2

              (4) 

where j, n, k represent the scale, band, and surge parameter, 
respectively. The total energy of WPD is: 

     ∑  𝑗,                (5) 

Relative energy for each subband in scale j can be 
expressed as: 

 𝑗,  
  , 

    
              (6) 

Wavelet packet entropy (WPE) is expressed as: 

      ∑ 𝑗,    𝑗,              (7) 

The N notation is used to denote the level of decomposition 
used in WPD. 
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In the previous study, we used one WPE value as a feature 
for signal analysis. In this paper, it is proposed to use N WPE 
value for the feature extraction of the pulmonary sound signal 
to improve accuracy in pulmonary sound classification. The 
characteristics used in this study are as in (8). 

     [    ,   2,  ,    ]           (8) 

Equation (7) uses the Shannon method to calculate WPE. 
This equation can be modified using Renyi entropy or Tsallis 
entropy. The calculation of Renyi entropy for WPE can be 
expressed by Equation (9). 

      
 

 − 
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where r is the notation in which WPE was calculated using 
Renyi entropy (RE), N is the decomposition level, and q is the 
order. Practically, we used the order of RE q = 2. 

Meanwhile, WPE with Tsallis Entropy method can be 
calculated using equation (10) 

   𝑡  
 −∑  , 

 

 − 
           (10) 

Where, t is the notation in which WPE was calculated using 
the Tsallis entropy (TE) method, N is the decomposition level, 
and q is the order. Here, we used TE order q = 2. 

MWPE would be calculated at the decomposition level N = 
1-7. Based on the results of previous research, a higher level of 
decomposition of N> 7 will not improve accuracy [8]. The 
mother wavelets tested were Haar, Db2, Db8, Bior1.5, and 
Bior2.8 as used in [8]. 

C. Classifier and Validation 

In this study, we used multilayer perceptron (MLP) as the 
classifier and N-fold cross-validation (Nfold CV) for 
validation. MLP and Nfold CV were selected as the classifiers 
in which the results obtained would be compared with previous 
studies that used the same classifier and validation. MLP was 
chosen because of its simple architecture and its ability to solve 
non-linear problems. MLP does not require a large amount of 
training data to learn [22]. MLP consists of the input layer, 
hidden layer, and the output layer. The number of features 
determine the number of node in input layer; while the number 
of nodes in the output layer corresponds to the number of data 
classes. Meanwhile, the number of hidden layers and the 
number of nodes in the hidden layer were determined by trial 
and error. Basic configuration of MLP is displayed in Fig. 2. 
For MLP parameters we used learning rate 0.3, momentum 0.2, 
epochs 500, and sigmoid as activation function. We did not 
choose the best parameter for MLP because we wanted to 
focus on the effect of MWPE as features. In this study, we used 
3fold CV; the overall data was divided into three datasets with 
one dataset used as test data and two datasets used as training 
data. Testing was done three times so that all dataset ever used 
once as test data. We chose 3FCV because the least amount of 
data in one class is 18 so that at least each data set will consist 
of six data. 

 

Fig. 2. MLP Configuration. 

IV. RESULTS AND DISCUSSION 

The result of wavelet packet decomposition up to level 2 
for wheeze sound can be seen in Fig. 3. It appears the 
information of the signal concentrated at low frequency. 
Subband AA2 occupied the band 0-1000Hz indicating that the 
most of the lung sound energies lied in the frequency <1000 
Hz. Thus, a decomposition level N > 2 was required to view 
information from the lung sound. In this research, we used the 
level of decomposition N = 7 so that the subband can be as 
wide as 31.75 Hz. 

 
(a) 

 
(b)    (c) 

 
(d)    (e) 

 
(f)   (g) 

Fig. 3. Wheeze Sound and its Wavelet Packet Decomposition Result (a) 

Wheeze Sound (b) Subband A1 (c) Subband D1 (d) Subband AA2 (e) 

Subband AD2 (f) Subband DA2 (g) Subband DD2. 
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Fig. 4 shows the MWPE results for each entropy 
calculation. Fig. 4(a) shows MWPE using Shannon method. 
Shannon method generated WPE values that increased along 
with increasing levels of decomposition. This was because the 
energy in each subband spread more evenly, especially for the 
frequencies below 1000 Hz. The WPE value of each 
decomposition level for each class was also relatively far apart, 
so there was a difference between each type of lung noise. 
Stridor produced the highest WPE value, while the pleural rub 
produced the lowest one. Stridor had a more evenly distributed 
signal spectrum <1000 Hz while the pleural rub had a spectrum 
that tended to be concentrated at one frequency. Comparison 
between Stridor and pleural rub can be seen in Fig. 5 and 6. 

Fig. 4(b) shows MWPEr in five classes of lung sound data. 
Crackle and stridor had the highest value, and relative coincide 
while wheeze, normal, and pleural rub resulted in lower values. 
The MWPEr value tended to increase as the N value rose but 
not so high. The minus sign was generated from the factor (1-
q) with q = 2. As shown in Fig. 3, some MWPEr values 
coincided at some N levels, causing the possibility of relatively 
high classification errors. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Wavelet Packet Entropy using (a) Shannon Entropy for N Level 

Decomposition (b) Renyi Entropy for N Level Decomposition (c) Tsallis 

Entropy for N Level Decomposition. 

 

Fig. 5. Stridor and Frequency Spectrum. 

 

Fig. 6. Pleural rub and Frequency Spectrum. 

Fig. 4(c) shows MWPEt in five classes of lung sound data. 
The results showed the same pattern as MWPEr where crackle 
and stridor had relatively close values while normal, wheeze, 
and pleural rub had lower values with the same pattern. 
MWPEt had the same pattern as MWPEr because it had the 
same form of the equation and was calculated in a same order. 
MWPEt had a higher magnitude compared to MWPEr. 

The accuracy of lung sound classification using MWPE, 
MWPEr, and MPWEt is presented in Table 1-Table 3. In Table 
1, the highest accuracy using MWPE was 97.98% using Db8 
with decomposition level N = 4 [8]. The 97.98% accuracy was 
also achieved when N = 5-7 but N = 4 was taken as the best 
parameter for producing the fewest features. It is generally seen 
that the accuracy increases when the N value rises and then 
stable over N = 4. At N = 4, 16 subbands (24) would be formed 
with a width of 250Hz on each. Because of the most significant 
information lying in the frequency <1000 Hz, then four 
subbands of 250 Hz were sufficient as a differentiator between 
data classes. It can be seen in Fig. 2 that for N = 4 there is a 
considerable difference between the data classes. 

MWPEr produced the highest accuracy of 93.94% using 
Bior2.8 and the decomposition level N = 4. For higher N, the 
accuracy value was unchanged. This result was similar with a 
result on MWPE where a higher level of decomposition did not 
produce a higher accuracy. MWPEt only produced the highest 
accuracy of 57.58% for Bior1.5 with N = 3. The higher 
decomposition rate did not improve the accuracy. This low 
accuracy was due to very high WPEt values and tended to 
spread. 
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TABLE I. THE ACCURACY OF MWPE (%) FOR VARIOUS MOTHER WAVELETS AND DECOMPOSITION LEVEL N [8] 

Mother wavelet 
Multilevel 

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 

Haar 63.64 80.81 88.89 91.92 90.91 92.93 92.93 

Db2 69.7 86.87 95.96 95.96 97.98 93.94 96.97 

Db8 53.54 77.78 91.92 97.98 97.98 97.98 97.98 

Bior1.5 66.67 81.82 88.89 91.92 93.94 90.91 93.94 

Bior2.8 70.71 82.83 92.93 96.97 96.97 96.97 96.97 

TABLE II. THE ACCURACY OF MWPER (%) FOR VARIOUS MOTHER WAVELETS AND DECOMPOSITION LEVEL N 

Mother wavelet 
Multilevel 

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 

Haar 64.65 59.6 66.67 64.65 64.65 66.67 67.68 

Db2 65.66 63.64 71.72 75.76 70.71 72.73 76.77 

Db8 65.66 63.64 80.81 82.83 80.81 80.81 86.87 

Bior1.5 65.66 63.64 81.82 87.88 86.87 93.94 90.91 

Bior2.8 66.67 65.66 89.9 93.94 93.94 93.94 93.94 

TABLE III. THE ACCURACY OF MWPET (%) FOR VARIOUS MOTHER WAVELETS AND DECOMPOSITION LEVEL N 

Mother wavelet 
Multilevel 

N = 1 N = 2 N = 3 N = 4 N = 5 N = 6 N = 7 

Haar 55.56 56.57 53.53 53.53 53.53 52.52 53.53 

Db2 55.56 56.57 53.53 55.56 53.53 48.48 50.5 

Db8 55.56 57.58 53.53 55.56 54.54 48.48 52.52 

Bior1.5 55.56 56.57 57.58 56.57 54.54 49.49 54.55 

Bior2.8 54.55 53.54 51.51 53.53 53.53 51.51 47.47 

From the simulation results obtained that MWPE using 
Shannon entropy yielded the highest accuracy of 97.98% using 
Db8 and N = 4. This result was better than MWPEr and 
MWPEt which produced the highest accuracy up to 93.94. The 
use of MWPE was better than the use of WPE at one 
decomposition level as in [8] which produced an accuracy of 
up to 70.71% at N = 1 using Bior2.8. In the previous study, the 
use of WE as a feature only resulted in 43.43% accuracy using 
DWT Db2 level 7; while, the combination of six entropies 
yielded an accuracy of 94.95% [7]. 

In this study, all WPD subband results were used to 
calculate WPE. In another study, the subband selection of 
WPD results was performed to estimate the signal features. In 
[12], the information on each node became the basis for 
selecting the subband to be used as a feature. Meanwhile, in 
another paper, the distribution of data on the frequency 
spectrum was used as the basis for the gradual take up of 
subband [23]. The study of the best subband selection for 

MWPE calculations will be a promising topic in subsequent 
research. 

V. CONCLUSION 

This paper describes the variation of MWPE calculations 
using Shannon entropy, Renyi entropy, and Tsallis entropy. 
Tests using five lung sound data classes showed that MPWE 
using Shannon entropy yielded higher accuracy compared to 
other two methods. This indicates that the distribution of 
energy in each subband is adequate to be the basis for the 
feature extraction of lung sound. MWPE is open for use in 
other biological sciences such as ECG, EEG, and heart sound. 
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